

Tetrahedron Letters 41 (2000) 7723-7726

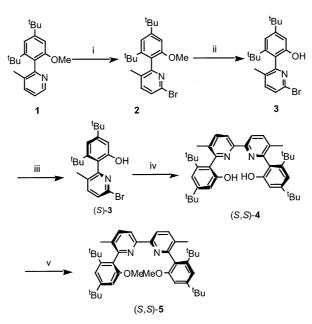
TETRAHEDRON LETTERS

Electronically controlled asymmetric cyclopropanation catalyzed by a new type of chiral 2,2'-bipyridine

Hei Lam Wong, Yuan Tian and Kin Shing Chan*

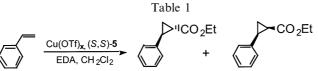
Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong Received 5 June 2000; accepted 28 July 2000

Abstract


An optically active atropisomeric 2,2'-bipyridine was synthesized and its copper complex was used in the asymmetric cyclopropanation of *para*-substituted styrenes with e.e. values up to 86%; the enantioselectivity exhibited a substrate electronic effect in a linear free energy relationship. \bigcirc 2000 Elsevier Science Ltd. All rights reserved.

The use of transition metal complexes of chiral atropisomeric biaryls for asymmetric synthesis has generated immense interest. The ligands based on the 1,1'-binaphthalene skeleton have achieved significant successes in asymmetric catalysis¹ especially the use of BINOL² and BINAP.³ Synthesis and application of chiral 2,2'-bipyridine ligands are also well explored.⁴ We note that the chirality of these 2,2'-bipyridines comes from the chiral substituents which are far away from the metal centers that play crucial roles in catalysis. Synthesis of atropisomeric pyridines such as 8,8'-disubstituted-bis-1,1'-isoquinolines has appeared but facile racemization still occurs.⁵ It is interesting to design a new type of chiral atropisomeric 2,2'-bipyridine.⁶ Here we report the synthesis of a chiral atropisomeric bipyridine and its application in asymmetric cyclopropanation.

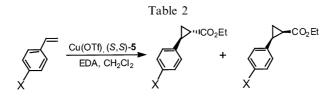
Our recent success in the synthesis of extremely sterically hindered atropisomeric pyridyl phenol⁷ has led us to explore the synthesis and catalytic activities of its dimer. As shown in Scheme 1, a bromo-group was introduced to the *ortho* position of the pyridyl ring of 1 by lithiation with *tert*-butyllithium and quenching with 1,2-dibromoethane. 2-Bromopyridylanisole 2 was then demethylated with 48% HBr/HOAc to give 3 which was subsequently separated into enantiomers by chiral HPLC.⁸ Nickel(0) catalyzed homo-coupling of (S)-3 gave (S,S)-4 without any racemization. Methylation of the chiral tetradentate ligand (S,S)-4 gave the chiral bipyridine (S,S)-5.


^{*} Corresponding author. E-mail: ksc@cuhk.edu.hk

^{0040-4039/00/\$ -} see front matter @ 2000 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(00)01306-X

Scheme 1. *Reagents and conditions*: (i) 'BuLi (1.5 equiv.), THF, -78° C, 1 h, BrCH₂CH₂Br (2 equiv.), THF, -78° C-rt, 4 h, 71%; (ii) 48% HBr (10 equiv.), HOAc, 120°C, 8 h, 95%; (iii) Daicel chiral OD column, hexane/2-propanol=8:1; (iv) Ni(PPh₃)₂Cl₂ (1 equiv.), Zn (2 equiv.), Et₄NI (1.5 equiv.), THF, 60°C, 8 h, 89%; (v) NaOH (2 equiv.), MeOH, rt, 1 h, Me₂SO₄ (2 equiv.), 40°C, 2 h, 90%

The copper complex of the chiral atropisomeric bipyridine **5** was applied to the asymmetric cyclopropanation of styrene derivatives with ethyl diazoacetate. In general, good cyclopropane conversion and diastereoselectivities were achieved, the major products, *trans*-cyclopropanes, were obtained with good enantioselectivity (Table 1). The use of copper(I) triflate and copper(II) triflate gave cyclopropanes with similar e.e. values and *trans/cis* ratios. When the reaction temperature was lowered from 20 to 0°C, the e.e. of the *trans*-cyclopropane increased from 80 to 86%. When the catalyst loading was increased from 1 to 3% (Entry 4), the enantioselectivity remained unchanged while the diastereoselectivity increased; the reason for this remains unclear.


Asymmetric cyclopropanation of styrene with EDA catalyzed by the copper complex of (S,S)-5

Entry	Х	Mol (%)	Time (h)	Temp (°C)	Yield (%)	Trans/cis ^a	e.e. (<i>trans</i>) ^{b,c}
1	1	3	4	20	72	92/8	79.4
2	1	1	5	20	89	86/14	80.1
3	2	1	8	20	88	85/15	80.2
4	2	1	24	0	95	86/14	86.0

^a Determined by GC-MS.

^b Determined by HPLC using chiral OD-H column.

^c Absolute configuration was (1R,2R) by comparison of optical rotations with literature values (Ref. 13).

Asymmetric cyclopropanation of p-substituted styrene with EDA catalyzed by the copper-(S,S)-5

Entry	Х	Time (h)	Trans/cis ^a	Yield (%)	e.e. (trans) ^{b,c}
1	OMe	6	86/14	81	73.5
2	Me	6	85/15	86	75.6
3	Н	8	85/15	80	80.2
4	Cl	18	86/14	78	84.0

^a Determined by GC-MS.

^b Determined by HPLC using chiral OD-H column.

^c Absolute configuration was (1R,2R) by comparison of optical rotations with literature values (Ref. 13).

Recently, much work has been done in order to study the electronic influence of the catalyst^{9–11} and the substrate¹² in transition metal catalyzed reactions. When *para*-substituted styrenes were subjected to cyclopropanation (Table 2), the most electron-poor olefin gave the highest enantioselectivity. Furthermore, the enantioselectivity depended on the electronic nature of the *para*-substituents and followed a linear free energy relationship (Fig. 1).

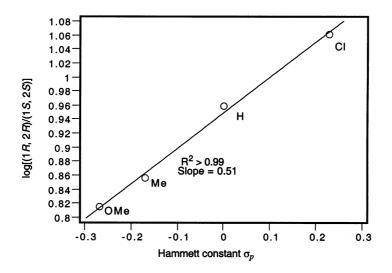


Figure 1. Plot of enantioselectivity versus Hammett constant $\sigma_{\rm p}$

In summary, we have successfully demonstrated a linear Hammett plot for the substrate electronic effect on catalytic asymmetric cyclopropanation using a new type of chiral atropisomeric 2,2'-bipyridine.

Acknowledgements

We thank the Research Grants Council of Hong Kong (CUHK 2160102) for financial support.

References

- 1. Rosini, C.; Franzini, I.; Raffaelli, A.; Salvadori, P. Synthesis 1993, 503.
- 2. Noyori, R. Chem. Soc. Rev. 1989, 18, 187; Pu, L. Chem. Rev. 1998, 98, 2405.
- 3. Noyori, R.; Takaya, H. Acc. Chem. Res. 1990, 23, 345.
- Kwong, H.-L.; Lee, W.-Z.; Ng, H.-F.; Chiu, W.-H.; Wong, W.-T. J. Chem. Soc., Dalton Trans., 1998, 1043; Collomb, P.; von Zelewsky, A. Tetrahedron: Asymmetry 1998, 9, 3911; Ito, K.; Katsuki, T. Chem. Lett. 1994, 1857–1860; Bolm, C. Angew. Chem., Int. Ed. Engl. 1991, 30, 542; Nakajima, M.; Saito, M.; Shiro, M.; Hashimoto, S.-I. J. Am. Chem. Soc. 1998, 120, 6419.
- 5. Chelucci, G.; Cabras, M. A.; Saba, A.; Sechi, A. *Tetrahedron: Asymmetry* **1996**, *7*, 1027; Tsue, H.; Fujinami, H.; Itakura, T.; Tsuchiya, R.; Kobayashi, K.; Takahashi, H.; Hirao, K.-I. *Chem. Lett.* **1999**, 17.
- Only two examples of atropisomeric 2,2'-bipyridines are described: Botteghi, C.; Schionato, A.; De Lucchi, O. Synth. Commun. 1991, 21, 1819; Wang, X. C.; Cui, Y. X.; Mak, T. C. W.; Wong, H. N. C. J. Chem. Soc., Chem. Commun. 1990, 167.
- Zhang, H. C.; Xue, F.; Mak, T. C. W.; Chan, K. S. J. Org. Chem. 1996, 61, 8002; Zhang, H. C.; Kwong, F. Y.; Tian, Y.; Chan, K. S. J. Org. Chem. 1998, 63, 6886.
- 8. The absolute configuration of 3, 4 and 5 was determined by relating to the absolute configuration of the known compound (S)-2-(3-methyl-2-pyridyl)-3,5-di-*tert*-butylphenol.⁷ The first fraction of (+)-3 eluted from the chiral OD-H HPLC column was reacted with "BuLi (2 equiv.) and quenched with water to give 2-(3-methyl-2-pyridyl)-3,5-di-*tert*-butylphenol with the absolute configuration of (S)-(+) determined by chiral HPLC analysis: (Daicel OD column, hexane/2-propanol=9:1, 0.5 mL/min), T_R =9.1 min. The retention time was identical with that of (S)-(+)-2-(3-methyl-2-pyridyl)-3,5-di-*tert*-butylphenol. Since no racemization occurs during the homo-coupling of 4, the absolute configurations of 3, 4 and 5 were determined to be (S)-(+), (S)-(+) and (S,S)-(+), respectively. All three compounds eluted as the first enantiomer from the OD column.
- For a leading reference on substrate electronic effects of asymmetric cyclopropanation, see: Lo, M. M.-C.; Fu, G. C. J. Am. Chem. Soc. 1998, 120, 10270.
- 10. Jacobsen, E. N.; Zhang, W.; Güler, M. L. J. Am. Chem. Soc. 1991, 113, 6703.
- For recent successful examples of ligand electronic effects in catalytic asymmetric catalysis, see: Doucet, H.; Fernandez, E.; Layzell, T. P.; Brown, J. M. Chem. Eur. J. 1999, 5, 1320; RajanBabu, T. V.; Radetich, B.; You, K. K.; Ayers, T. A.; Casalnuvo, A. L.; Calabrese, J. C. J. Org. Chem. 1999, 64, 3429; Palucki, M.; Finney, N. S.; Pospisil, P. J.; Güler, M. L.; Ishida, T.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120, 948; Yang, D.; Yip, Y.-C.; Chen, J.; Cheung, K.-K. J. Am. Chem. Soc. 1998, 120, 7659
- For recent successful examples of substrate electronic effects in catalytic asymmetric catalysis, see: Zhang, H. C.; Xue, F.; Mak, T. C. W.; Chan, K. S. J. Org. Chem. 1996, 61, 8002; Yang, D.; Yip, Y.-C.; Chen, J.; Cheung, K.-K. J. Am. Chem. Soc. 1998, 120, 7659.
- 13. Nakamura, A.; Konishi, A.; Tsujitani, R.; Kudo, M.; Otsuka, S. J. Am. Chem. Soc. 1978, 100, 3449.